Effect of fullerene encapsulation on radial vibrational breathing-mode frequencies of single-wall carbon nanotubes.
نویسندگان
چکیده
We investigate the effects of C60 fullerene encapsulation on the radial breathing mode (RBM) of semiconducting single-wall carbon nanotubes (SWCNTs) under tunable laser excitations. The changes in the RBM frequencies after C60 insertions show characteristic behavior; higher frequency shifts are observed in the case of smaller diameter tubes (dtor =1.32 nm). The observed frequency shifts are satisfactorily explained by the diameter-dependent interaction between the encapsulated C60 and the host SWCNTs.
منابع مشابه
Validation of Shell Theory for Modeling the Radial Breathing Mode of a Single-Walled Carbon Nanotube (RESEARCH NOTE)
In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...
متن کاملRadial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory
In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential is used to calculate the vdW ...
متن کاملMeasuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes.
Raman spectroscopy is used to measure the strain in individual single-wall carbon nanotubes, strained by manipulation with an atomic-force-microscope tip. Under strains varying from 0.06%-1.65%, the in-plane vibrational mode frequencies are lowered by as much as 1.5% (40 cm(-1)), while the radial breathing mode (RBM) remains unchanged. The RBM Stokes/anti-Stokes intensity ratio remains unchange...
متن کاملCoupled Axial-Radial Vibration of Single-Walled Carbon Nanotubes Via Doublet Mechanics
This paper investigates the coupled axial-radial (CAR) vibration of single-walled carbon nanotubes (SWCNTs) based on doublet mechanics (DM) with a scale parameter. Two coupled forth order partial differential equations that govern the CAR vibration of SWCNTs are derived. It is the first time that DM is used to model the CAR vibration of SWCNTs. To obtain the natural frequency and dynamic respon...
متن کاملPhonon spectromicroscopy of carbon nanostructures with atomic resolution.
The vibrational properties of single-wall carbon nanotubes have been probed locally with atomic-scale resolution by inelastic electron tunneling spectroscopy with a low-temperature scanning tunneling microscope. The high spatial resolution has allowed the unraveling of changes in the local phonon spectrum related to topological defects. We demonstrated that the radial breathing mode is suppress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 103 2 شماره
صفحات -
تاریخ انتشار 2009